# A Number System of Their Own 

By Alex Bellos and Daniel Lovsted

## Challenge 1

Equation i) shows a symbol with four strokes, from which is subtracted a symbol with three strokes, leaving a single stroke. An intuitive guess would be that this is the equation 4-3=1. Equation ii) is therefore 2 multiplied by $a$, which equals $\mathbb{\pi}$ —the symbol for 3 with an extra horizontal stroke. A glance at all the other numbers on the page shows that all of them, apart from $\quad$, are combinations of up-and-down strokes and side-to-side strokes. Our assumption from i) is that the up-and-down strokes are units, since we have seen $1,2,3$, and 4 . There are never more than four of these units, so we can deduce that writing 5 requires another symbol, which could very well be a side-to-side stroke. If this is true, then $\llbracket$ might be 5 (horizontal stroke) +3 (vertical strokes) $=8$. Thus $a=4$, or W. Equation iii) gives us confirmation of this theory, since it reads $4+8=12$ ( 12 being composed of two horizontal strokes and two vertical ones). Equation iv) states that one less than $b$ is 14 . So $b=15$, which will be three horizontal strokes, or 5 .

We have worked out the system for single-digit Kaktovik numerals, and the remaining equations show how the system works for two-digit numbers. Equation v) reveals that $\iota^{\gamma}-4=16$. Thus, $\wedge^{\gamma}=20$. The Kaktovik system reveals itself as a positional base 20 -system, meaning that once we get to 20 , we need to have a column for the 20 s and a column for the single digits (up to 19). This is just like the decimal system, where once we get to 10 , we need a column for the 10 s and a column for single digits up to 9 . We can deduce that $\gamma$ is the zero symbol, so $\backslash^{\gamma}$ means a single 20 , and zero of the digit that counts from one to 19 .

We can check this theory with equation vi). It contains two 20 and 16 , which is 56 , and that divided by 7 makes 8 , or $\llbracket$. Equation vii) says that 5 multiplied by $c$ is 30 . Thus $c=6=\varsigma$.

So:
$a=w$
$b=s$
$c=r$

Solutions continue on the following page.

## Challenge 2

For the Iñupiaq words, we know can translate the following Arabic numerals from our solutions to the equations: atausiq 1
tallimat pinasut 8
qulit malguk $\quad 12$
akimiagutailaq 14
akimiaqatausiq $\quad 16$
iñuiñ̃̃aq qulit 30

The numerals were designed to be useful for Iñupiaq words, and therefore it would seem to make sense that the words are counting in blocks of 5 up to 20 . In other words, we can deduce that tallimat is 5 and pinasut is 3 ; quitit is 10 and malguk is 2 ; and akimiaq and iñuiñ̃̃aq are 15 and 20 . The irregular one is 14 , but this looks like some form of "one from 15."

So, we come to the conclusion that:
3 is pinasut
11 is quitit atausiq
22 is iñuiñ̃̃aq malguk

In summary, the Iñupiaq count in ones and fives in a base-20 system, and the numerals were designed to reflect that by using two basic strokes: vertical for single units and horizontal for fives.

